

Aerial Surveys with Drones within NBPOL

A Story of Innovation Will Unsworth 8th November 2019

- Precision Agriculture
- Ensures that our inputs (labour, machinery, etc.) to the plantation are exactly as required
 - Excess is a waste
 - Inadequate is a loss
- Precision avoids waste while optimizing outputs (crop)

Innovations

- A new approach to collect data
- A new approach to processing data
- A new approach to reporting data
- A new approach to using data

- Respect to the original innovators!
 - William Griffiths
 - David Mather
 - Mike Jackson
 - Brian Cazalet
 - Richard Tiamu
 - Dr Luc Bonneau
 - Solomon Sar

Fertiliser Planning

Limited

Kg/p	Stems Per Hectare (SPH)	Required Kg of Fertiliser 192	
1.5	128	180	Excess supply (6%)
1.5	120	202.5	Short supply (5%)
1.5	135	202.0	

٠

- Cost of over-ordering
 - High stock levels
 - Storage costs
 - Double handling
 - Losses (Spoilage and Theft)

- Costs of under-ordering
 - Under-fed palms
 - Yield losses
 - Additional orders
 - Opportunity costs of inputs

Straightforwards

Harder to quantify

- NBPOL
 - 91,081 ha of Oil Palm in PNG and SI (31 Dec 2018)
 - 11,361,688 palms in PNG and SI
 - 4.41kg/palm (2018 average for all palms)
 - 50,100 tonnes of fertiliser (2018)
 - ~USD 20 million per year in fertiliser expenditure

Fertiliser Planning

8

- Utilise drones to generate aerial imagery of the plantations and allow for computer based counting of in-field palms
- Generate an accurate palm stand census to ensure that the correct fertiliser volumes are ordered

Progress To Date

 The first overwhelming option (even several years ago) was which way to go first. Two broad options were available

 Fortunately, there were differing opinions, and 2 groups went with different options

- Drones were selected based on
 - Cost
 - Support and Training
 - Processing capabilities
 - Perceived quality of product
- Most of our expectations were wrong
 - Technology moved around us
 - Reliance on others could not be sustained

- Again, 2 groups went in different directions
- Proprietary Flight Planning Software
 - Single package of software, but multiple internal modules for each stage of the process
- Open Source Flight Planning Software
 - Multiple software packages with links and conversions in-between
- Both suffered from continuous updates, in areas with limited internet access this cost a LOT of time

How to Fly Drones?

How to Fly Drones?

One Survey – 30-1,000 ha – 1-20 flights – 400-500

photos per flight

- Similarly to the flight planning, we used one system tied to the drone manufacturer, and one off-the-shelf graphics program for stitching together images
- One site worked on their desktops
- One site invested in a high-spec workstation for data processing

- One site used the proprietary automated (image recognition) palm counting software
- One site hired a team to manually count palms onscreen with large screens and even touch screens
- Both require immense amounts of checking and double checking. False positives, false negatives, whoopsies and do-overs

Team 1	The 'A' Team	Team 2
Quad Copter	\rightarrow	Fixed Wing
Recreational Drone		Commercial Drone
Open Source flight planning software	\rightarrow	Proprietary flight planning software
Manual Palm Counts	3 rd Way	Automatic Counts
Workstation		Desktop Computer

- Finally, we have
 - A stitched ortho-photo of a block (6GB)
 - A series of points on a map
 - A number (number of palms)
 - A number (palm density)
- We have data (which we love)
- But not information yet (that our managers are waiting for)

How to Deliver the Data

- Reports
- Data delivery through file sharing
- Conversion into Google Earth for ease of access

How to Deliver the Data

 Heat Maps to show consistency of planting

 Using measurements to develop indexes to reduce the amount reporting

Outcomes

Findings

What is Next?

Thank you

